

MORPHOPHYSIOLOGY AND GROWTH ANALYSIS OF ONION (*ALLIUM CEPA L.*) CROP GROWN IN AGRIPHOTOVOLTAIC SYSTEMS

Godavari Joshi¹, Godawari Shivaji Pawar^{1*}, Indra Mani Mishra¹, Khizar S. Baig¹, Baslingappa M. Kalalbandi¹,
Abhishek Shastri², Dileep K. Zate¹, Suresh Laxmanrao Waikar¹ and Vijaya Shivaji Pawar¹

¹College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India.

²Energy Advisor, GIZ-IDEF (SO), New Delhi, India.

*Corresponding author E-mail: gspawar@vnmkv.ac.in

(Date of Receiving : 10-09-2025; Date of Acceptance : 12-11-2025)

Agriphotovoltaics combine solar energy generation and agricultural cultivation on same land. A field experiment conducted at Agriphotovoltaic Research Project, Manwat, Parbhani. (M.S.) analysed the effect of agriphotovoltaic system environment on onion morphology and analysed plant growth across the vegetative phase. The experiment was conducted in Randomised Block Design with four replications. Plant height, number of leaves, leaf length, leaf width, leaf thickness, pseudostem diameter, and collar diameter were studied at 75 DAT and SCMR Index at 60 DAT using SPAD-502. Plant Growth Analysis parameters such as AGR, CGR, RGR, NAR and LAR were determined in the 20-40 DAT and 40-60 DAT period and LAI, SLW and SLA was determined at 20, 40 and 60 DAT. Onion morphology below 3.75 m bifacial panel height with 5.65 m pitch distance (T₅) showed significantly better performance compared to other treatments in morphophysiological and growth analysis parameters such as plant height (68.62), number of leaves (13.00), leaf length (53.03) collar diameter (20.46) and growth analysis parameters such as AGR (75.2) and CGR (1.18). Onion plants below 1.75 m monofacial panel with 7.5 m pitch distance (T₁) recorded maximum leaf length (53.95), SCMR Index (67.00), LAR and SLA while maximum leaf width (17.33) and pseudostem diameter (11.91) were recorded in between 3.75 m bifacial panel with 5.65 m pitch distance (T₆). Highest RGR (0.115) and NAR (0.79) values were obtained in open field control conditions.

ABSTRACT

Keywords : Agriphotovoltaics, Onion, Morphophysiology, Plant Growth Analysis

Introduction

Onion (*Allium cepa L.*) belongs to the Amaryllidaceae family, having originated from Central Asia. It is a bulb crop cultivated extensively worldwide for being a major food ingredient, immense profitability and constant demand in the market. India produced 311.29 lakh metric tonnes (Anonymous, 2022) from 19.14 lakh hectare area in 2022. Morphophysiological traits of onion such as plant height and leaf dimensions are significantly influenced by environmental conditions such as shading or low light availability and significantly impact the photosynthetic efficiency, the assimilation of sugars.

Food and energy demands are increasing proportionally to the human population. Climate change is reducing available arable land, marking the importance of meeting SDG2 and SDG7 with haste. Agriphotovoltaics merges electricity generation and crop cultivation on the

same piece of land thus increasing land productivity in less land area. (Goetszberger and Zastrow, 1982) Photovoltaic panels are installed at height from ground level and crops are grown below or in between of panel space. Photovoltaic panels raised off ground allows crops to receive sunlight and also generate solar energy. (Dupraz *et al.*, 2011) Panel-induced shading induces morphological changes such as increase in plant height and leaf area and thinner leaves, typical of shade-avoidant species maximising light capture in decreased light availability. (Amaducci *et al.*, 2018) Crop morphology deviation from normal in agriphotovoltaics does not necessarily translate to reduction in yield performance, as benefits from a modified growing condition also are reported. Diffusion of light in below panel treatments improved yields in lettuce. (Tani *et al.*, 2014)

Onion is a light sensitive crop requiring moderate light conditions for adequate development to aid bulb growth. Morphological plasticity in leaves and pseudostem under

reduced light availability are reported. (Mondal *et al.*, 1986) No significant reduction in onion biomass (Kadowaki *et al.*, 2012) or bulb yield (Jo *et al.*, 2022; Kim *et al.*, 2023) have been reported, suggesting feasibility of onion bulb production under agriphovoltaics. However, it is important to further elucidate the influence agriphovoltaic microclimates have on onion growth and development, and provide insight of onion plant adaptability to reduced light in tropical conditions. Analysis of growth will identify the panel height and distance between panels that onion plant growth can tolerate. Hence the present investigation is carried out to study the morphology and growth analysis of onion crop grown in various agriphovoltaic systems.

Material and Methods

The field experiment was conducted in *Kharif* 2024 at Agriphovoltaics Research Project at Manwat, Parbhani District by Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra. The research site is divided into four sections consisting of three photovoltaic (PV) systems and one Non-PV i.e. control conditions. Six experimental plots were located below of and in between of panels in each of the three systems and one experimental plot was located in the open field condition without PV systems. Three types of panels with 20% efficiency and 11° panel tilt were erected to face southward direction and details are detailed in Table-1.

Onion production (var. Bhima Super) under seven photovoltaic systems was tested in a randomised block design with four replications. The treatments have been designed as follows based on location of the plot with respect to panel type, panel height and distance between panel rows: (T₁) below 1.75 m monofacial panel with 7.5 m pitch distance, (T₂) in between 1.75 m monofacial with 7.5 m pitch distance, (T₃) below 1.75 m bifacial panel with 10 m pitch distance, (T₄) in between 1.75 m bifacial panel with 10 m pitch distance, (T₅) below 3.75 m bifacial panel with 5.65 m pitch distance, (T₆) in between 3.75 m bifacial panel with 5.65 m pitch distance and (T₇) is non-PV i.e. open field. The location of experimental plots within the photovoltaic systems are schematically represented in Fig-1.

45-day old onion seedlings var. Bhima Super (DOGR, Pune) were transplanted at a spacing 15 cm between rows 10 cm within rows in all treatments. Recommended dose of fertiliser was applied as: 100:50:50 kg NPK per hectare. Half dose of Nitrogen and full dose of Phosphorous and Potassium was added at land preparation and the remaining half dose of nitrogen was applied in split doses at 30 and 45 days after transplanting (DAT). The crop was maintained by recommended plant protection measures and irrigated at regular intervals.

Number of leaves were counted at 75 DAT. Plant height, leaf length and leaf width at 75 DAT were determined with a meter scale, leaf thickness, pseudostem diameter, collar diameter at 75 DAT were determined with vernier callipers while SCMR Index was recorded with Chlorophyll Meter SPAD-502 Plus (Konica Minolta Optics, Japan) at 60 DAT. Absolute Growth Rate (AGR) (Radford 1967), Crop Growth Rate (CGR) (Watson 1952), Relative

Growth Rate (RGR) (Blackman 1919), Net Assimilation Rate (NAR) (Radford 1967), Leaf Area Index (LAI) (Watson, 1952), Leaf Area Ratio (LAR) (Whitehead and Mycersough, 1962), Specific Leaf Area (SLA) (Radford 1967) and Specific Leaf Weight (SLW) (Radford 1967) were determined from five whole plant samples per replication per treatment collected at 20, 40, 60 DAT. Leaf area for the above calculation was determined by Leaf Area Meter (Li-3100C, LI-COR Inc. USA N.E.) Plant samples were dried at 65°C till constant weight was obtained and total dry weight of plants for the above calculations were measured with electrical single pan balance.

The data collected was analysed by one-way ANOVA and the mean performance of parameters are represented. The results are considered statistically significant at P < 0.05 level.

Results and Discussion

Experimental data related to morpho-physiological parameters viz. plant height, number of leaves, leaf length, leaf width, leaf thickness, pseudostem diameter, collar diameter, SCMR Index, and growth analytical parameters such as AGR, CGR, RGR, NAR, LAI, LAR, SLA, SLW were measured at 20 days interval from date of transplanting at 20, 40 and 60 DAT under different photovoltaic systems are critically interpreted and the results are presented below.

Significant variation were noted in morphophysiological parameters as caused by different agriphovoltaic systems. The mean performance of morphophysiological parameters are presented with appropriate figures.

Morpho-physiology

The maximum plant height (68.62) was observed in T₅ - below 3.75 m bifacial panel with a pitch distance of 5.65 m, statistically in line with T₃ (64.77) as is illustrated in Fig. 1. T₁ (58.59) followed thereafter. Minimum plant height were observed in T₆ (40.56). Photovoltaic panel-induced shading increased the height of onion plants located below the panel as a shade avoidant mechanism. Increase in plant height in crops grown under PV panels conditions has been reported in lettuce (Marrou *et al.*, 2013). The maximum leaf length (53.95) was seen in T₁ - below 1.75 m monofacial panel with pitch distance of 7.5 m which was statistically at par with T₅ (53.03) and followed by T₃ (48.10). The minimum leaf length was attained in T₄ (32.98).

Maximum leaf width (17.33) was attained in T₆ - In between 3.75 m bifacial panel with 5.65 m pitch distance, followed by T₇ (15.23) as is shown in Fig. 3. The minimum width of leaf was observed in T₄ (11.30). Maximum leaf thickness (1.62) was obtained in T₇ - non-PV open field i.e. control which was followed by T₅ (1.36). The least thickness of leaf was observed in T₁ (0.81). Mondal *et al.* (1986) in their research reported that longer leaves help onion plants intercept light better. The width of leaf reduced due to reallocation of photosynthates that increased length of leaf over width and thickness. Redistribution of photosynthates to increase length of the leaves over width or thickness,

improved light reception in PV-shaded plants (Wu *et al.*, 2017) However, the same was not observed in T₆ where width and leaf thickness did not decrease significantly. Higher panel clearance height disperses light evenly, resulting in foliar growth of plants less impacted by light stress. (Tani *et al.*, 2014; Amaducci *et al.*, 2018) Maximum pseudostem diameter (11.91) was obtained in T₆ - In between 3.75 m bifacial panel with 5.65 m pitch distance. It was statistically at par with T₇ (11.71) and minimum diameter was recorded in T₄ (6.74) The maximum diameter of collar (20.46) was recorded in T₆ - In between 3.75 m bifacial panel with 5.65 m pitch distance. It was followed by T₇ (15.69). The minimum collar diameter was obtained in T₃ (11.77). Increase in pseudostem and collar diameter has not been reported in any literature related to crop cultivation in agriphovoltaics so far as reduction of stem diameter is the typical behaviour in shade avoidant plants. The transportation of photo-assimilates into the bulbs is believed to have caused the onion pseudostem and collar to thicken (Mettananda and Fordham, 1999) The bifacial panels and height of PV panels in T₆ created a microclimate and light environment favourable for onion foliar growth, thus improving photosynthetic efficiency (Amaducci *et al.*, 2018)

The variation in number of leaves and SCMR Index observed in each photovoltaic system is illustrated in Fig. 4. The maximum number of leaves (13.00) was achieved in T₅ - below 3.75 m panel height with 5.65 m pitch distance, which was found statistically at par with T₄ (12.00), and followed by T₇ - Non-PV open field (11.50). The number of leaves were the least in T₁ (8.25). Reduction in number of leaves under APV conditions were noticed in green bean (Cossu *et al.*, 2021) due to the limited availability of PAR which caused slow accumulation of sugars, reducing leaf initiation, thus, improving the assimilation capacity of existing leaves (Mondal *et al.*, 1986). The maximum SCMR Index (67.00) was observed in T₁ - Below 1.75 m monofacial panel with 7.5 m pitch distance, that was found statistically at par with T₂ (65.03), T₆ (64.73) and T₃ (63.00). The minimum SCMR Index value was recorded in T₇ (47.23) Shading reduced volume and increased the number of chloroplasts, improving photosynthetic efficiency in reduced light. Similar observations were reported for rice (Thum *et al.*, 2025)

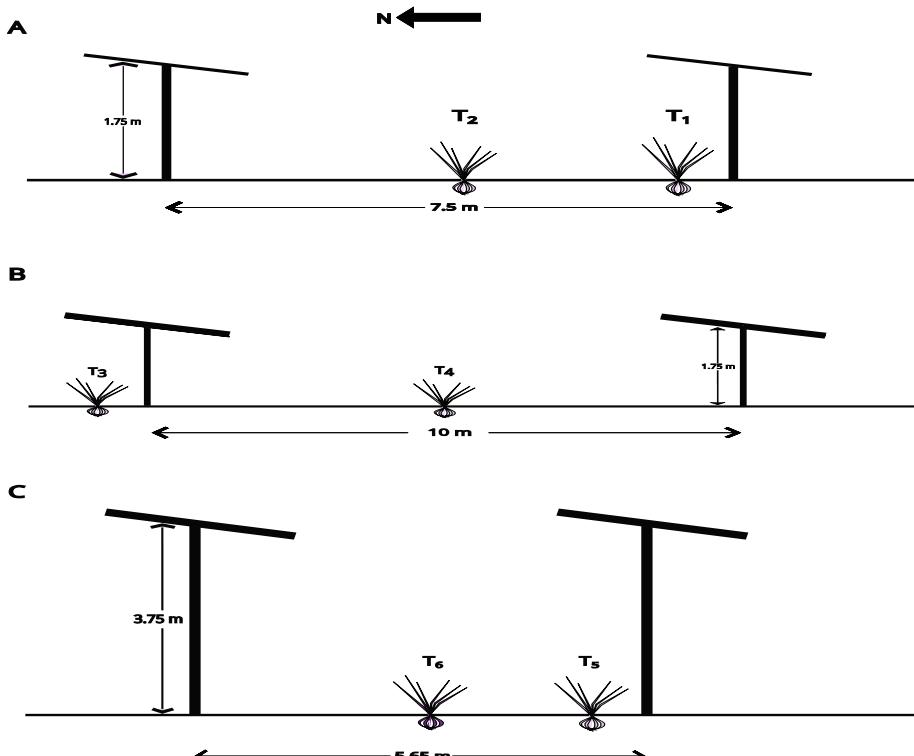
Growth Analysis

AGR (Fig-5A) improved over time in agriphovoltaic conditions. The maximum AGR (71.05) was obtained in T₅ which was followed by T₆ (48.38). The minimum AGR was obtained in T₁ (13.96) Between 40-60 DAT he maximum AGR (75.21) was obtained in T₅ followed by T₆ (56.91) The minimum AGR was obtained in T₁ (17.95) CGR (Fig-5B) showed an increasing trend over the vegetative period under photovoltaic conditions. The maximum CGR between 20-40 DAT (1.18) was obtained in T₅. which was followed by T₇ (0.78). The minimum CGR value in the same time period was obtained in T₁ (0.21). The maximum CGR in 40-60 DAT (1.14) was recorded in T₅ which was followed by T₆ (0.86) while the minimum CGR was obtained in T₁ (0.27) AGR and CGR performance observed is attributed to better light availability under panels with taller heights.

Availability of light influences crop growth significantly. (Marrou *et al.*, 2013) A 13% decrease in light availability was reported between panel at greater panel heights while 4% increase in below panel light availability was reported (Zhang *et al.*, 2025). This is reflected in the better performance of T₅ over T₆ at 3.75 m panel clearance height. The influence of increase in light availability on the photosynthetic assimilation was reflected in the AGR and CGR values obtained in the experiment.

RGR (Fig-5C) values under photovoltaic conditions decreased over time. The maximum RGR (0.12) between 20 to 40 DAT was obtained in T₇ which was followed by T₄ (0.09) The minimum RGR in 20-40 DAT duration was recorded in T₁ (0.04). The RGR decreased further in 40-60 DAT time period with maximum RGR (0.04) obtained in T₅ which was at par with T₄ (0.03). Maximum light is available in the open field conditions when compared to below panel or in between panels. Zhang *et al.* (2025) reported decrease in light availability by 50% in between panels and by 70% at least below panels. This is reflected in the maximal RGR value in T₇ in between 20 and 40 day interval which reduced steeply in 40-60 DAT due to meeting growth requirements prior to bulb development. NAR (Fig-5D) observations revealed a decreasing trend across the crop duration. The maximum NAR between 20-40 DAT (0.79) was obtained in T₇ which was at par with T₅ (0.75). The minimum NAR in the same period was obtained in T₁ (0.19). NAR values recorded a steep decrease between 40-60 DAT when compared to 20-40 DAT period. Maximum NAR (0.48) in this time interval was obtained in T₅ which was at par with T₇ (0.43) and T₄ (0.42). The minimum NAR value was obtained in panel shaded treatments of T₃ (0.17). The greater light availability in open field conditions revealed a non-significant increase in NAR between 20-40 DAT over T₅. The reversal in this trend in 40-60 DAT is attributed to plants in T₇ meeting the growth requirements for bulb production. The decrease in light availability below panels of 3.75 m height did not significantly hinder the NAR in plants. SLW (Fig-6B) decreased over the vegetative phase. Higher values were obtained in between panels as compared to below the panels. The maximum SLW (5.78) at 20 DAT was obtained in T₅, followed by T₆ (4.83). At 40 DAT, T₇ recorded the highest value (7.86) which was at par with T₆ (7.52) and T₅ (7.37). T₇ recorded the maximum SLW (12.01) at 60 DAT which followed by T₆ (10.64). The minimum SLW was obtained in T₁ at 20 DAT (2.42), 40 DAT (2.91) and 60 DAT (3.38). Improved photosynthetic efficiency and photo-assimilation in the 3.75 m panel height photosystem was reflected in the SLW observations recorded. Reduction in SLW under photovoltaic panels was reported in pak choi and rape plant (Hsiao *et al.*, 2023)

LAI (Fig-6A) revealed an increase trend over time in all treatments from 20 to 60 DAT. The maximum LAI at 20 DAT (0.54) was recorded in T₆ and T₃ which was followed by T₅. The maximum LAI at 40 DAT (1.20) was obtained in T₆ which was followed by T₅ (0.90) and T₃ (0.82) At 60 DAT, maximum LAI recorded in T₆ (1.22) and T₂ recorded minimum LAI (0.17) at 20 DAT. At 40 DAT minimum LAI was recorded in T₇ (0.42) at 60 DAT, it was recorded in T₂


(0.71). The LAR (Fig-5E) values increased across the vegetative period with maximum values recorded in T_1 between 20-40 DAT (0.20) and 40-60 DAT (0.19) which was followed by T_3 in 20-40 DAT (0.17) and 40-60 DAT (0.12). The minimum LAR (0.09) was obtained in T_5 and T_7 at 20-40 DAT and in T_5 (0.06) at 40-60 DAT. SLA (Fig-6C) was found to increase across the duration of vegetative growth. The maximum SLA at 20 DAT (0.42) 40 DAT (0.34) and 60 DAT (0.30) was observed in T_1 which was followed by T_3 at 20 DAT (0.30) 40 DAT (0.28) and 60 DAT (0.24). The minimum SLA values were recorded in T_4 at 20 DAT (0.18), 40 DAT (0.14) and 60 DAT (0.10). LAI increased greatly in the juvenile stages in the 3.75 m photosystem due to ample light availability. The leaf growth rate decreased however an increasing trend in leaf area was still observed. Plants under shade tend to alter their morphology to efficiently utilise the low light availability by increasing leaf area (Hsiao *et al.*, 2023). This was reflected in the increased values of leaf area-dependent traits such LAI, LAR and SLA that were obtained in T_1 and T_3 . Plants below 1.75 m panel height experienced higher shading than plants in the 3.75 m photosystem as was also reported in Kiwi tree by Zhang *et al.* (2025) Similar effects of solar panel-induced shading were reported in photovoltaic greenhouse-grown rape plant (Hsiao *et al.*, 2023) and french bean (Cossu *et al.*, 2021) where increment in SLA and LAR respectively were reported.

Conclusion

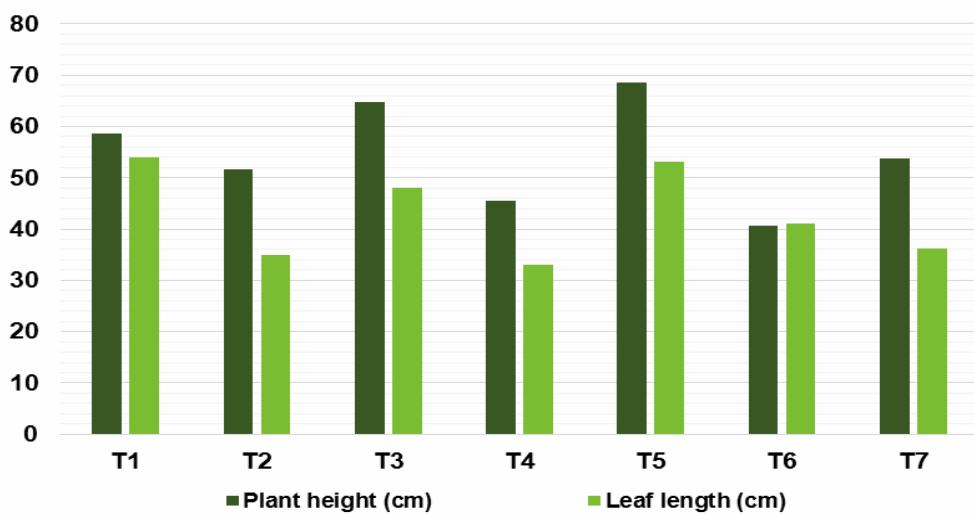

Plants in T_1 , T_3 and T_6 exhibited shade avoidant response to shading by photovoltaic panels. Significant variation due to low light availability were reflected as increase in plant height, leaf length, leaf width, SCMR, and decrease in leaf thickness. The significant variation observed in pseudostem diameter and collar diameter are attributed to reduction in photosynthetic assimilation in the below panel treatments. Plant growth analysis conducted echoed the same with photo-assimilation decreasing in the panel-shaded treatments (T_1 , T_3 and T_6) as compared to open field conditions (T_7) or treatments with reduced shade effect (T_2 , T_4 and T_5). Of the seven treatments, plants below 3.75 m bifacial panel with 5.65 m pitch distance revealed the most efficient utilisation of resources in photovoltaic conditions, showing significant performance in parameters such as plant height, number of leaves, leaf length, leaf width, leaf thickness, SCMR, pseudostem diameter, collar diameter, AGR, CGR, RGR, NAR, LAI, LAR, SLA and SLW.

Table 1 : Specifications of agriphovoltaic systems viz. panel type, panel height and pitch distance between panel rows.

Panel Type	Panel Clearance Height (in meters)	Pitch Distance (in meters)
Monofacial	1.75	7.5
Bifacial	1.75	10
Bifacial	3.75	5.65

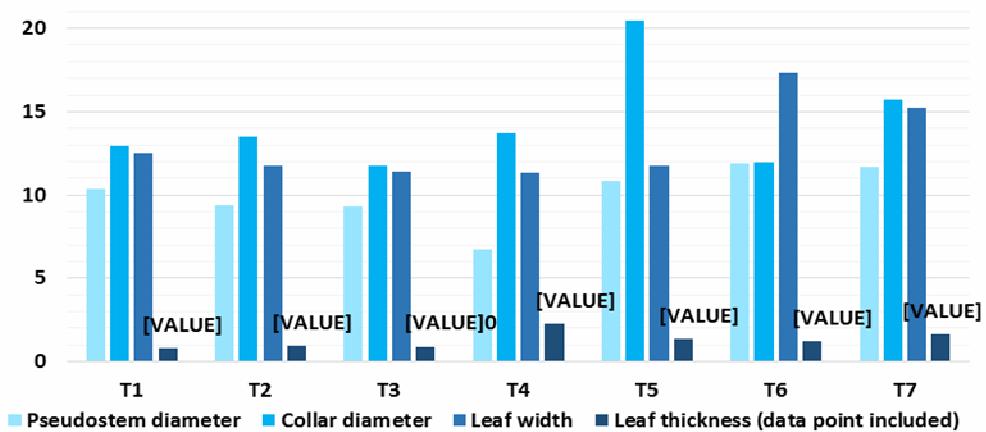


Fig. 1: Schematic representation of the treatments within different photovoltaic systems, (A) monofacial panel of 1.75 m height and 7.5 m pitch distance. (B) bifacial panel of 1.75 m height and 10 m pitch distance. (C) bifacial panel of 3.75 m height and 5.65 m pitch distance. Within each system, plots were positioned either below the photovoltaic panel or in between panel rows (e.g., T_1 located below monofacial panels of 1.75 m height and 7.5 m pitch distance)

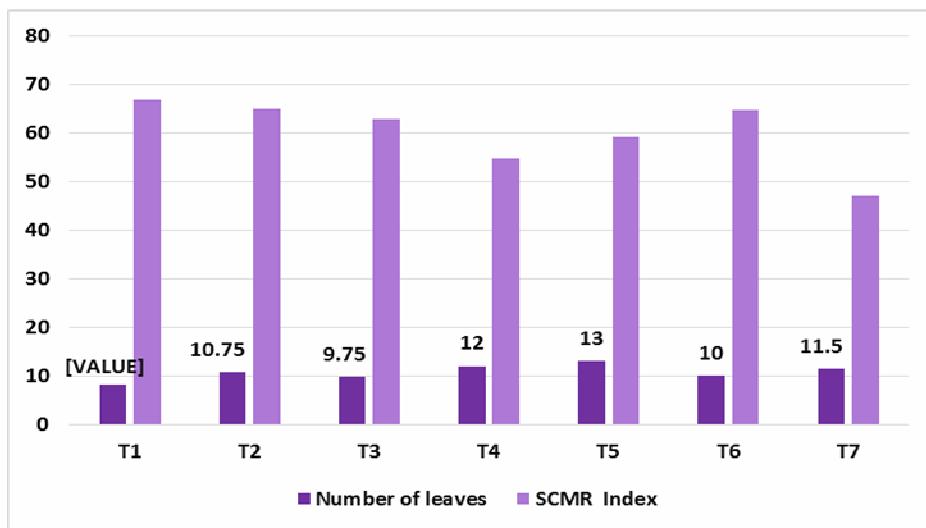
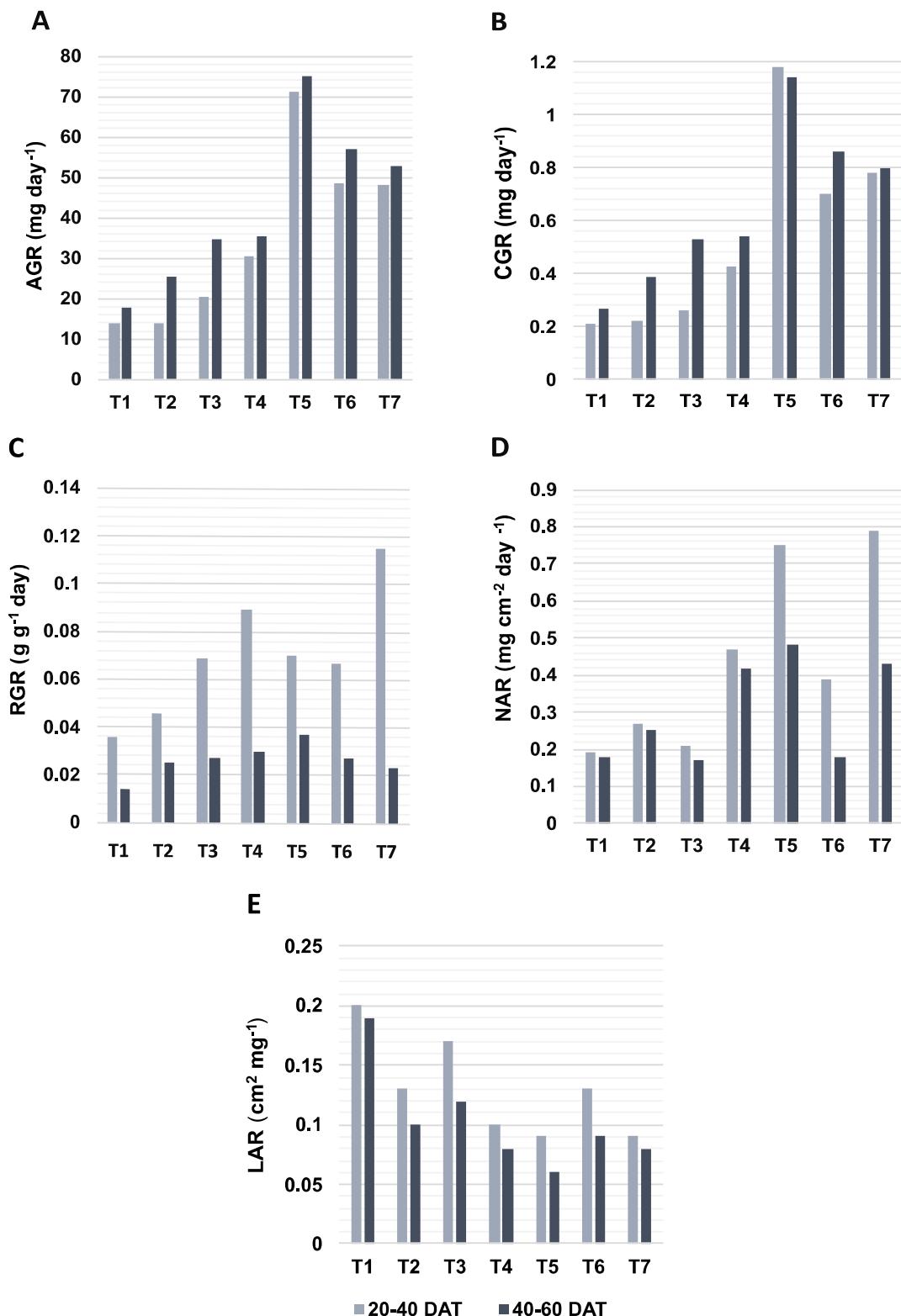


Fig. 2: Plant height and leaf length in centimetres as affected by different agriphotovoltaic systems


25

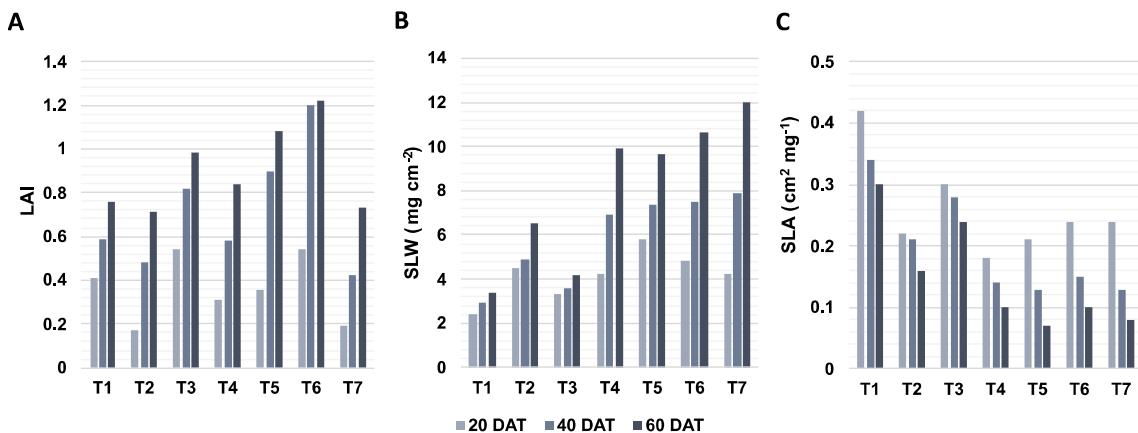

Fig. 3 : Leaf Width, Leaf thickness, Pseudostem diameter and Collar Diameter in millimetres as affected by different agriphotovoltaic systems. The values for leaf thickness are included.

Fig. 4 : Number of leaves and SCMR Index as influenced by different agriphotovoltaic systems. The data points for number of leaves are included.

Fig. 5 A : Effect of agrophotovoltaic systems on AGR in 20-40 DAT and 40-60 DAT. **B.** Effect of agrophotovoltaic systems on CGR. **C.** Effect of agrophotovoltaic systems on RGR. **D.** Effect of agrophotovoltaic systems on NAR. **E** Effect of agrophotovoltaic systems on LAR. The values were calculated in twenty day intervals from 20-40 DAT and 40-60 DAT. The light coloured columns depict values obtained in 20-40 DAT period while the dark coloured column depict values obtained in 40-60 DAT duration.

Fig 6 : A. Effect of Agriphotovoltaic Systems on Leaf Area Index ; B. Effect of Agriphotovoltaic Systems on Specific Leaf Weight (mg cm^{-2}). C. Effect of Agriphotovoltaic Systems on Specific Leaf Area ($\text{cm}^2 \text{mg}^{-1}$). The observations were taken in 20 day intervals at 20, 40 and 60 DAT. The lightest column depicts observations taken at 20 DAT, the middle column at 40 DAT and followed by the dark coloured column at 60 DAT.

Acknowledgements

The present study was conducted as a part of a collaborative research project funded and supported by GIZ Germany along with VNMKV, Parbhani in carrying out the present investigation and the processing charges. All the observations were taken at Agriphotovoltaic Research Project, Manwat, Parbhani District using the necessary facilities available at Department of Plant Physiology, College of Agriculture, VNMKV Parbhani.

References

- Anonymous (2022) NHB: Monthly Report Onion for 2020-2021. www.nhb.gov.in
- Amaducci, S., Yin X. and Colauzzi M. (2018). Agrivoltaic systems to optimise land use for electric energy production. *Appl. Energy*. **220**, 545–561.
- Blackman V. H. (1919) The compound interest law and plant growth. *Annal. Bot.* **33**:353-360.
- Brown R. H. (1984) Growth of the green plant. In M.B. Tesar (Ed.) *Physiological basis of crop growth and development* pp.153-174. Madison, WI: ASA and CSSA.
- Dupraz C., Marrou H., Talbot G., Dufour L., Nogier A. and Ferard Y. (2011) Combing solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. *Renew. Ener.* **36**(10), 2725-2732.
- Cossu, M., Sirigu, A., Deligios, P. A., Farci, R., Carboni, G., Urracci, G., & Ledda, L. (2021). Yield response and physiological adaptation of green bean to photovoltaic greenhouses. *Front. Plant Sci.* **12**.
- Goetzberger A. and Zastrow A. (1982) On the coexistence of Solar-Energy Conversion and plant cultivation. *Int. J. Solar. Ener.* **1**(1):55-69.
- Hsiao, C.-L., Wang, C.-Y., & Hsu, Y.-T. (2023) Effect of stimulated photovoltaic roofs on the yield and nitrate content of Pak Choi and rape. *HortScience*, **58**(11) 1297-1305
- Jo, H., Asekova, S., Bayat, M. A., Ali, L., Song, J. T., Ha, Y. S., Hong, D. H. & Lee, J. (2022). Comparison of Yield and Yield Components of Several Crops Grown under Agro-Photovoltaic System in Korea. *Agriculture*, **12**(5), 619.
- Kadowaki, M., Yano, A., Ishizu, F., Tanak, T. & Noda, S. (2012) Effects of greenhouse photovoltaic array shading on Welsh Onion growth. *Biosystems Engineering* **113**, 290-297.
- Kim, B., Suh, S. G., Oh, W., Oh, S. & Jung, J. H. (2023) Growth and agronomic traits of green onions under the agrivoltaic system with red supplemental LED lighting. *Journal of People Plant. Envir.* **26**(1) 1-8.
- Marrou, H., Guilioni, L., Dufour, L., Dupraz, C. and Wery, J. (2013). Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? *Agril. and Forest Meteorol.*, **177**: 117–132
- Mettananda, Sk. A. and Fordham, Sr. (1999). The effects of plant size and leaf number on the bulbing of tropical short-day onion cultivars (*Allium cepa* L.) under controlled environments in the United Kingdom and tropical field conditions in Sri Lanka. *The J. of Hortic. Sci and Biotech.* **74**(5): 622-631.
- Mondal, M. F., Brewster, J. L., Morris, G. E. L., & Butler, H. A. (1986). Bulb development in onion (*Allium cepa* L.) I. Effects of plant density and sowing date in field conditions. *Annal. f Bot.*, **58**(2), 187–195
- Radford P. J. (1967) Growth analysis formulae-their use and abuse. *Crop Sci.* **7**(3):171-175.
- Tani, A., Shiina, S., Nakashima, K & Hayashi, M. (2014). Improvement in lettuce growth by light diffusion under solar panels. *J. of Agril. Meteorology*. **70**(3), 139-149.
- Thum, C. H., Okada, K., Yamasaki, Y., & Kato, Y. (2025). Impacts of agrivoltaic systems on microclimate, grain yield, and quality of lowland rice under a temperate climate. *Field Crops Res.*, **326**, 109877.
- Watson, D. J. (1952). The physiological basis of variation in yield. *Adv. In Agro.* **4**, 101-145.
- Whitehead, F.H. and Mycer Sough, P.J. (1962). Growth analysis of plant ratio of mean relative growth rate to mean growth rate of increase in leaf area. *New Physiologist*. **61**, 314-321.

- Wu, Y., Gong, W., & Yang, W. (2017). Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. *Scientif. Rep.* 7(1)
- Zhang, L., Gong, J., Yang, Z., Wu, X., Wang, W., Yang, C., Xu, G., Wu, C. & Bao, E. (2025) Evaluating the contribution of decreasing heights of photovoltaic panels on light environment and agriculture production in agriphovoltaic systems. *J. of Cleaner Prod.* 495. 145091.